Sutured annular Khovanov-Rozansky homology

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Khovanov-rozansky Homology via Canopoli

In this paper, we describe a canopolis (i.e. planar algebra) formalism for Khovanov and Rozansky's link homology theory. We show how this allows us to organize simplifications in the matrix factorizations appearing in their theory. In particular, it will put the equivalence of the original definition of Khovanov-Rozansky homology and the definition using Soergel bimodules in a more general cont...

متن کامل

Wall-crossing Morphisms in Khovanov-rozansky Homology

We define a wall-crossing morphism for KhovanovRozansky homology; that is, a map between the KR homology of knots related by a crossing change. Using this map, we extend KR homology to an invariant of singular knots categorifying the Vasilliev derivative of the HOMFLY polynomial, and of sln quantum invariants.

متن کامل

A computation in Khovanov-Rozansky Homology

We investigate the Khovanov-Rozansky invariant of a certain tangle and its compositions. Surprisingly the complexes we encounter reduce to ones that are very simple. Furthermore, we discuss a “local” algorithm for computing Khovanov-Rozansky homology and compare our results with those for the “foam” version of sl3-homology.

متن کامل

Khovanov Homology, Sutured Floer Homology, and Annular Links J. Elisenda Grigsby and Stephan Wehrli

In [28], Lawrence Roberts, extending the work of Ozsváth and Szabó in [23], showed how to associate to a link, L, in the complement of a fixed unknot, B ⊂ S, a spectral sequence whose E term is the Khovanov homology of a link in a thickened annulus defined in [2], and whose E term is the knot Floer homology of the preimage of B inside the double-branched cover of L. In [6], we extended [23] in ...

متن کامل

Some Differentials on Khovanov-rozansky Homology

We study the relationship between the HOMFLY and sl(N) knot homologies introduced by Khovanov and Rozansky. For each N > 0, we show there is a spectral sequence which starts at the HOMFLY homology and converges to the sl(N) homology. As an application, we determine the KR-homology of knots with 9 crossings or fewer.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2017

ISSN: 0002-9947,1088-6850

DOI: 10.1090/tran/7117